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The main terms in the exponential forms of the phase probability distributions of structure invariants 
are von Mises distributions P(q0-- [27tlo(k)] - 1  exp [k cos ( 4 -  ~o)] (a). It is shown that in this formula k 
and ~0 are given by k exp itp=2(F)lFI/0. 2 (b), where F, a complex variable, is identified with a structure 
invariant, (F)  is its mean value and 0 .2 is its variance. From (a) and (b) are obtained, by simple algebraic 
calculations of (F)  and 0.2, the formulae for phase probability distributions of structure invariants, the 
derivation of which up to now required lengthy calculations via joint probability distributions of many 
structure factors. A new application is the calculation of the phase probability distribution of a quartet 
employing both the magnitudes of the cross terms and a priori structural information. 
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Introduction 

Analogous to Gauss' derivation of the normal distri- 
bution yon Mises (1918) has derived the normal dis- 
tribution of a phase, 

1 
P ( ~ ) -  2trio(k) exp [k cos (~-qg)] ,  (1) 

which in the literature is referred to as the circular 
normal distribution or the von Mises distribution 
(Batschelet, 1965; Mardia, 1972). The mode of (1) is 
at q~ = ~o, k is a measure of the sharpness, and Io is the 
modified Bessel function of order zero. 

The distribution of the phase of a triple product 
EhlEh2Eh 3, h i + h E + h 3 = 0 ,  given the magnitudes of 
the normalized structure factors Ehl , Eh2 and Eh3 
(Cochran, 1955; Hauptman, 1976; Heinerman, 1977a) 
is a von Mises distribution (see Hendrickson & 
Lattman, 1970 and Koenig, 1972, 1976) with 

k exp icp =2  aa2~2 ]EhlEh2Eh3 ] . (2) 

If a priori structural information is used, (2) becomes 

k exp iqg=2Q123 (exp iq123)lEh1Eh2Eh31 (3) 

(Main, 1976; Heinerman, 1977a). 
The distribution of the phase of a quartet 

EhlEh2Eh3Eh4, hi + h 2 + h 3 + h 4 = 0 ,  given the magni- 
tudes of Eh., Eh-, Eh. and Eh. (Hauptman, 1976) is 
a von MlSeS distribution with 

0 4 
k exp i~0 = 2 ~ ]EhlEh2Eh3Eh4[. (4) 

If, in addition, the magnitudes of the cross terms 
ghl+h2 , Eh2+h 3 and Eha+h 1 are used, the exponential 
form of the phase distribution of a quartet is again 
avon Mises distribution (see Giacovazzo, 1976), where 
nOW 

°4 is k exp iqo=2 ~222 + O.~(IEhl+h 2 +lEh2+h3[ 2 

+lEh3+h~12--3) 1 ]EhlEh2Eh3Eh4 [ (5) 

[from (4.5) of Hauptman (1976) and the method de- 
scribed by Heinerman (1977b)]. 

Expressions (2)-(5) have been derived by lengthy 
calculations via joint probability distributions of from 
three to seven structure factors. We shall show that 
there is a general expression for k exp itp which directly 
leads to (2)-(5). If the whole structure is known this 
general expression leads to a delta function for P(tb), 
as it should. This was not the case for (3). As new ap- 
plications we shall calculate formulae analogous to 
(4) and (5), now with a priori structural information 
included. 

The yon Mises distribution 

Let us consider a complex variable F = A + iB where 
A and B are functions of primitive random variables. 
We assume that both the distribution of the real part 
A and the distribution of the imaginary part B are 
Gaussian. In addition we assume that A and B are 
independent and that their variances are equal. Then 
it can easily be verified that the joint probability dis- 
tribution P(X, Y) of A and B is 

P(X, Y)= 1 exp I 1 y2 7~0.~ - -  ~-~ (X 2 -~- 
[_._ 

- 2 ( A ) X - 2 ( B ) Y + ( A ) 2 + ( B ) 2 )  1 ,  (6) 

where 

a2 = (IFI2> _ I(F>I 2. (7) 

Employing the transformation 

X = R c o s ~ ,  Y = R s i n ~ ,  (8) 
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and writing 

(F)=Q exp iq, (9) 

we obtain 

P(R,45)= )-j~Eexp - - j [Rg-2QR c o s ( ~ - q ) + Q  2] . 

(lO) 

From this distribution it follows that the conditional 
probability distribution of the phase of F given the 
magnitude of F is 

-L - e x p l [ Q R  ] P(~iR)= 2 --~- cos (q) - q) , ( l l )  

where L, the normalizing constant, is 

L = 2 n l o  2 ~ -  . (12) 

Comparing (1 1) with the von Mises distribution (1), 
using (9) and replacing R by IF1 we obtain 

k exp iq~= 2 (F)IF] a2 (13) 

We note that ( F )  and 0"2 have to be calculated with- 
out fixing the magnitude of F. 

Formula (13) gives k exp iq~ as a function of the 
mean value, the variance and the magnitude of F. 
Identifying F with a structure invariant (in general a 
structure factor product; see the last section), the 
magnitude of which is obtained from experiment, it 
remains to calculate ( F )  and 0 "2. 

where N is the number of atoms in the unit cell, 
fj(h) is the scattering factor of atom j and rj is the 
position vector of atom j. For simplicity we assume 
that the space group is P1. Next, we identify F in 
(13) with a triple product FhaFhzFh3 , hi + h z + h 3 = 0 ,  

N N N 
F=- FhxFhEFh3= E ~-, E f i l (h l ) f j2 (hE) f i3  (ha) 

J1=1 J2=l J3=1 

× exp {2hi[hi . ( r j l - r j 3 ) + h 2 . ( r j g - r j 3 ) ] } .  (15) 

Simple algebraic calculations (see Appendix I) give 
N 

( F ) =  ~ ~(hl).~(h2)jj(h3) (16) 
j = l  

and 
N N N 

(IFI2) =- [ E J) (h,)2] [ E fJ( h2)2] [ ~ Jj(h3) 2] 
j--1 j = l  7=1 

N 
+ [ ~.[j~h,)./j~hz)jj(h3)] 2 

j = l  
N 

- -  V 2 "  2 2 L(h,) 7')(h2) ~(h3) , 
j = l  

which lead to the variance 
N N N 

0"2=[  E f J ( h l ) 2 ] [ E  Jj(h2)2}[ E fJ (h3)2] 
/ : l  /= l  / : l  
N 

__ y 2 2 '  2 L(h,) Z~h2) ~/j(h3) . 
j = l  

From (13), (16) and (18) we obtain the result 

(17) 

(18) 

k exp iq9 = 2 

N 
[ ~ fj~h,)fj~h2~{h3)]lFh,Fh2Fh3l 
j = l  

N N N N 
[ E J){hl) 2] [ Z f~{ h2)2] [ Z .f)(h3)2] - Z JJ(hl)2~{h2)2fj(h3) 2 
j = l  j = l  j = l  j = l  

(19) 

For a triple product a discussion on the choice of the 
primitive random variables has been given by Heiner- 
man (1977a). It was shown that regarding h~, hz and h3 
as the primitive random variables leads to the same re- 
sult as regarding all the atomic position vectors as 
the primitive random variables, although the condi- 
tions are different. It was also shown that in the ap- 
proach where the atomic position vectors are regarded 
as the primitive random variables a priori structural 
information can be used. In the following sections this 
approach will be the basis of our calculations. 

The phase probability of a triple product 

We shall first consider the case that there is no a priori 
structural information, except for the contents of the 
unit cell. The structure factor Fh is defined by 

N 
Fh= ~ f j(h)exp(2nih.r~),  (14) 

j = l  

If we use the definitions for Eh and a,, 

Fh 
Eh-- (iFhl2)l/2 , 

where 

and 

(20) 

N 
( IFh l2 )=  ~ ./i(h) z , (21) 

j = l  

N 
o ' , -  ~ Z~, (22) 

j = l  

where Zj is the atomic number of atom j, formula (19) 
leads to (2) provided we neglect the last summation 
in the denominator of (19) [this is justified if the 
normalized scattering factors 

N 
f,~h)/( Z .D~h?) '/2 

j = l  
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are small] and if we assume that all the atoms have 
the same unitary scattering factorf(h), 

.~(h) = Z j ( h ) .  (23) 

The conditions for (19) are hi4:0 i=1,2 ,3  and 
hi#hj i,j= 1,2,3 i--#j (see Appendix I). Heinerman 
(1977a) also arrived at the condition 2hi4:hj. The two 
cases 2hi 4: hj and 2hi=hi  lead to different joint prob- 
ability distributions for the phases of Ehl, Eh2 and 
Eh,. However, both distributions give the same prob- . . . 
ablhty distribution for the phase of EhlEh2Eh3 (see 
Appendix II; there we also give the probability dis- 
tribution for the phase of E~]IEh2, 2hi +h2 =0). 

We now consider the case of a priori structural in- 

to be carried out. (Group) scattering factors and pro- 
ducts of (group) scattering factors do not depend on 
the (group) position vectors. Therefore averaging these 
with respect to the primitive random variables means 
averaging with respect to the orientational parameters 
of the groups j, Pl + 1 <-j<-P2. From (25) and (26) it 
follows that 

P P P 

0 " 2 =  2 2 2 (IgJl(hl)gJ2(h2)gJ3(h3)]2) 
j l = l  j 2 = l  j 3 : l  

P 
- ~ Kgj~hl)gj(hz)gj~h3))] 2 , (27) 

j = l  

which with (13) and (25) leads to 

k exp iq~ = 2 

P 

[ ~ (gj(hl)gj(h2)gj(ha))][Fh,Fh2Fhal 
j = l  

P P P P 

~ ~ (Igj~(h~)gj2(h2)gj3(h3)[2)-~ I(gj(hl)gj(h2)g~(h3))l 2 
j 1 = 1  j 2 = l  j 3 = 1  j = l  

(28) 

formation (see Heinerman, 1977a), and write Fh as 
P 

Fh = ~ gj(h) exp (2gih. r2), (24) 
j = l  

where for l<j<pl  the rj's are the atomic position 
vectors and the gj(h) are the scattering factors f~(h), 
and for P l +  1 <_j<_p the rj's are the group position 
vectors and the gj(h) are the group scattering factors. 
The independent primitive random variables are (a) 
1 <J<Pl, the atomic position vectors, (b) Pl + 1 <-J<-P2, 
the position vectors and orientational parameters of 
the groups, (c) P2 + 1 <_j<_p, the position vectors of 
the groups with known orientation. Then, identifying 
F with FhlFhzFh3 , h I + h  2 + h  3 = 0 ,  a s  before, we obtain 
for F expression (15) with N replaced by p and the 
fj(h) replaced by gj{h). For ( F )  and (IFI 2) we find 

P 
(F)=  ~ (gj(hl)gj(h2)gj(h3)) (25) 

j = l  

and P P P 

( ] F ]  2 ) =  2 ~ 2 ([gjl(hl)gJ2(h2)gJ3(h3)] 2) 
j l = l  j 2 = l  j 3 = 1  

p 

+ (I ~ gj{hl)gj{hz)gj(h3)] 2) 
j = l  

P 
- ~ (]gj(hl)gj(h2)gj~h3)12), (26) 

j = l  

where in the right-hand sides of (25) and (26) the gj(h) 
with pl+l<j<p2 depend on the orientational par- 
ameters with respect to which the averaging still has 

If there is no structural information (28) reduces 
to (19). 

If there is only a small amount of structural in- 
formation [i.e. the magnitudes of the normalized 
(group) scattering factors 

P 
ga{h)/( ~ (Igj{h)12>) '/2 

j = l  

are small] the variance (27) can be approximated by 
P P P 

0"2 ~ [  2 (Ig,{h,)12)][ Z (Ig,{h2)12)][ Z (Ig,{h3)[2)] • 
j = l  j = l  j = l  

(29) 

If the denominator of (28)is replaced by (29) and (20) 
employed, where now 

P 
(IFhlZ) = ~ (Igj{h)12>, (30) 

j = l  

(28) leads to (3). 
For the case that the entire structure is known q~ 

is equal to the true phase of the triple product and k 
is infinite, which means that then (28) leads to a delta 
function centred on the true phase of the triple pro- 
duct; this is in strong contrast to (3) in this limiting 
case (see Heinerman, 1977a). 

The phase probability of  a quartet 

Analogous to the derivation of (28) we obtain for 
F = FhlFhzFh3Fh4, h 1 + hz + h3 + h4 = 0, 

k exp icp = 2 
P P 

2 . . . 2  
j l  = 1 j4 = 1 

P 

E ~ (gj~hl)gj(h2)gj(h3)gj~h,,))]lFhlFh2Fh3Fh,,] 
j = l  

P 

(]gj~(hl)gJ2(h2)gj3(h3)gj,,(h,,)]2) - ~ ](gj~hl)gj~h2)gj(h3)gj~h4))] 2 
j = l  

(31) 
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If no structural information is available, p=N and 
g~(h)=fj{h), j =  1 .. . .  ,N; then (4) is obtained by using 
(20)-(23) and neglecting the last sum in the denomi- 
nator of (31). 

where Khlh2 , a complex quantity, is obtained from a 
least-squares fitting procedure [see Appendix III; the 
normalized (group) scattering factors are assumed to 
be small], 

Khlh2  ---- 

P P 

[ ~ (gj(h,)gj(h2)gj(hl +h2))] [ ~ (gj(h3)gj(h4)gj(h3 +h4))] 
j=l j=l 

p 

[ ~ (Ig.,(h~ +h2)12)] 2 
j = l  

(34) 

The  cross terms Fhl +h2, Fh2+h3  and Fh3+h  1 
The expression for a quartet can be written as 

P 
F =  FhtFh2Fh3Fh4= E gj(hl)gj(h2)gj(h3)gs(h4) 

j = l  
P P 

+ E E gJl(hl)gJl(h2)gjg(h3)gj2(h4) 
j l = l  j 2 = l  

Jl ~J2 

× exp [21ri(hl + h2).(rjl- rj2)] 
p p 

+ E E gJ2(hl)gJl(h2)gjl(h3)gJ2 (h4) 
j1=1 j2=1 

Jl ¢J2 

× exp [-2rti(h2 + h3).(rjl -- r j2) ] 
p p 

+ ~ ~ gjl(hl)gj2(h2)gjl(h3)gj2(h4) 
j1=1 j2=1 

Jl :~J2 

x exp [2~i(h3 + hl) . (rj l-  rj2)] 
P P P P 

+ E E E E gJl(hl)gJ2(h2)gJ3(h3)gJ4(h4) 
j1=1 j 2 = l  j3=1 j4.=l 

not Jl=J2^J3=J4 
not Jl=J4^J2=J3 
not Jl =J3 ^J2 =J4. 

x exp {271i[hl. (r jl - r j4) + h 2 . (rj2 -- r j4 ) 

+ h 3 . (r j3 - -  r j4)] } • (32) 

For equal atoms and no a priori structural informa- 
tion the double summations in (32) are directly related 
to [fhl+h2] 2, IFh2+h3l 2 and IFh3+hll 2. For unequal 
atoms and/or a priori structural information we there- 
fore make the following estimation 

p p 

~ gjl(hl)gjl(h2)gj2(h3)gj2(h4) 
j l=l  j2=1 

Jl ~eJ2 

x exp [2hi(hi + h E ) . ( r j l - r j 2 ) ]  
p p 

~--Khlh2 E E gJl(hl-t-h2)gJ2(h3 -}-h4) 
j1=1 j2=1 

Jl ~J2 

× exp [27~i(hl + h2) .  (rjl - rj2)] 
p 

= Khlh2(lfhl +h2l 2 -- E Igj{hl -kh2)12), (33) 
j = l  

The results for the two remaining double summations 
are obtained by permutation of hi, h2 and h3. Then 

p 

( F) ~- ~ (gj(hl)gj(h2)gj(h3)gs(h4)) 
j = l  

P 
+ Khlh2[lFhl +h212- E (Ig,{hl-bh2)12)] 

j = l  
P 

q- g h 2 h 3 [ [ f h  2 +h3l 2 -  ~ (Igj(h2 +h3)12)] 
j = l  

P 

-]- g h 3 h l [ [ f h 3 + h l [  2 -  E (Igjgh3 +h~)12)] • 
j = l  

(35) 
With the same assumption which led to (34) we ob- 
tain for the variance 

p p 

°'2 ~-- [ ~ ([gXhl)12)] [ 2 (Igj(h2)12)] 
j = l  j = l  

P P 
x [ ~ ([g~(h3)12)] [ ~ ([gj(h4)[2)]. (36) 

j=l j = l  

The final result expressed in normalized (group) 
scattering factors, 

g,{h) (37) tj(h) = ([fhl2) 1/2, 

and in normalized structure factors (20), where (IFh[ 2) 
is given by (30), is 

p 

k exp icp~-2{ 2 (tj(hl)tj(h2)tj(h3)tj(h4)) 
j=l 

P 
+[  ~ (ts{hl)tj{h2)tj{hl+h2))] 

j = l  
P 

x [ ~ (tj{h3)tj(h4)t:(h3 + h4))] (IEhl + h212- 1) 
j = l  

P 

+[- ~ (t3(h2)t~(h3)tj(h2 +h3))]  
j = l  

P 

× [ ~ (tj(hl)tj{h4)tj(h~ -q-h4))] ( lEh2+h3]  2 - 1 )  
j = l  

P 

+[  ~ (tj(h3)tj{hl)tj{h3+hl))] 
=1 

P 

x [ ~ (tj~h2)t~{h,)tj{h2 +h,))]( lghz+hl[  2 -  1)} 
j = l  

× [EhlEh2Eh3Eh4 ] . (38) 
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If there is no a priori structural information, then 
with the use of (22) and (23) formula (5) is obtained. 
It can easily be seen that if, for example, IFhl +h2] is 
unknown, the term in (38) with IEhi +s212 -- 1 vanishes, 
or in other words IEh~ +hE] 2 is then replaced by its 
mean value, which is equal to one. Analogous remarks 
apply to IFhE+hal and ]Fha+hll (see also Heinerman, 
1977b). 

The fourfold summation in (32) contains double 
summations that are related to the squares of IFhxl, 
IFnEI, IFh3l and IFh41. Fixing these magnitudes in the 
calculations of the mean and variance of F -  
FhlFhEFhaFha, hi +hE+h3  + h a = 0 ,  implies that IFI is 
fixed, which is not allowed in the basic formula (13). 
The same holds for the magnitudes IFhil, IFhEI and 
IFhal in the calculations of the mean and variance of 
F=FhlFhEFha, h g + h E + h 3 = 0  (see also Kroon & 
Krabbendam, 1970). 

The calculations for higher-order structure in- 
variants can be performed in the same way as de- 
scribed for a quartet. We calculated the yon Mises 
distribution for a quintet employing the magnitudes 
of the ten cross terms and assuming point atoms. This 
distribution appears to be identical to the exponential 
form of formula (3.3) of Hauptman & Fortier (1977). 

Discussion 

The orientational averages (gj(hl)gj(hE)g.l{h3)), Pl + 
l~_j~_pE, h i + h E + h 3 = 0 ,  are calculated with the 
B(z,t) formula (Hauptman, 1965) which gives an ex- 
pression for the average of exp {2~i[hl . ( r l - r 3 ) +  
h 2 . (rE-r3)]} over all orientations of the triangle 
formed by the atoms 1, 2 and 3. A formula for the 
orientational average of exp {Eni[h I . (r I - r4) + h 2 . (r 2 
- r4) + h a . (r 3 - r a )  ]}, needed for the calculation of 
(gj(h~)gj(hE)gj(ha)gj(h4)), Pl + 1 <J< PE, hi t h E + h a t  
ha=0,  is not yet available. We suggest a numerical 
(computer) calculation. This may have the advantage 
that partial information about the orientational par- 
ameters, if available, can be used in the averaging 
process. 

So far ( F )  and o .2 have been calculated for struc- 
tures in space group P1. It should be stressed that 
formula (13) is more generally valid: both ( F )  and 
0 .2 c a n  be computed for any space group. Structure 
(sem)invariants of which the phases are restricted to 
0 and n (or ~ and ~+n),  however, are excluded be- 
cause of the requirement that the real and imaginary 
parts of F have to be independent. For such structure 
(sem)invariants the phase probability can be obtained 
from a one-dimensional Gauss distribution. Then for 
centrosymmetric structures 

P+ =0"5+0-5 tanh IFI(F)  (39) 
0.2 

[see, for example, Klug (1958), Kitaigorodskii (1961), 
Giacovazzo (1975) and for the use of a priori structural 
information Kroon & Krabbendam (1970)]. 

In general F can be identified with any structure 
factor product or with a single structure factor. For 
the latter, including a priori structural information, 
(13) leads to the formula of Sim (1959), while (39) gives 
Woolfson's (1956) formula. 

We are indebted to Dr H. Hauptman for supplying 
preprints of his work. 

APPENDIX I 

The calculation of (16) and (17) 

Formula (15) can be written as 
N 

F= ~ fj{hl)fj{h2)fj(h3) 
j = l  

N N N 

+ ~ ~ ~ f~l(hl)f~2(hg)f~3(h3) 
j 1 = I  j2=1  j3=1  

not Jl =J2 =J3 

x exp {21ri[hl . ( r / 1 - r j a )+  h 2 . (rjE-rja)] } . (I.1) 

Averaging with respect to the atomic position vectors 
gives zero for all terms in the last summation if 
h ie0 ,  i=  1,2,3, 

N 

(e)= ~ f~(hl)L~h2)L~h3). (I.2) 
j ; 1  

The expression for IFI 2 is 
N N 

Ifl 2-- ~ ... ~ J~ l (h l ) I~2 (h2 ) f j3 (h3 ) f /1 (h1~2(h2 ) /~3 (h3 )  
ji=I i3=1 

x exp (Erti{hx. [ ( r j l  --  r i l ) - - ( r j 3  --  r /a ) ]  

+ hE.  [-(rj2 - r i E ) -  (rj3 - r i a ) ]  )) 
N N N 

= 2  2 Z fJl( h 2 2 2 I) ~E(h2) ~3(h3) 
j l = l  j 2=1  j3=1  

N N 

+ ~ 2 fj{hx)fj{hE)fj(h3)f/(hl)j~(hE)Ji(ha) 
j = l  i = 1  

j=/:i 

N N 

+ Z "'" ~ f j l ( h l )  ' ' . j i 3 ( h 3 )  
Jl = 1 i3 = 1 

not Jl =i l  ^J2 =i2 ^J3 =i3 
not J l = J 2 = J 3  ^ i 1 = i 2  =i3 

x exp (Eni{hl. [ - ( r j l - r i l ) - ( r j 3 -  r i a ) ]  

+hE.  [ ( r j2 - r iE) - ( r j3 - r i a ) ]} ) .  (I.3) 

Again, averaging with respect to the atomic position 
vectors gives zero for all terms in the last summation 
if h i¢0,  i=  1,2,3, and hiChj, i,j= 1,2,3 i¢ j ,  

N N N 
(If l  2 ) = (  ~ f~ {hl)2) ( Z fj{hE)2) ( Z fj{ha) 2) 

j = l  j = l  j = l  
N N 

+( ~ fj(hl~fy(h2~fj(h3)) 2 -  ~ fy(hl)2fj(h2)Efi(h3) 2. 
j = l  j = l  

(I.4) 
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APPENDIX II 

The condition 2hi ~ hj 

From (21) of Heinerman (1977a), where 2hi4:hj, it 
follows that the joint probability distribution 
P(dpl,~E,~3IR1,RE,R3) of the phases of Ehl, Eh 2 and 
Eh3 , given IEhll, IEh2l and IEhal, h lq-hE+h3=0,  is 
equal to 

p p 

(I ~ ~ [gjz(hl)gil(h2)g~2(h3)gj2(h4) 
j1=1 j2=1 

Jl ¢J2 

-- gh 1 h2gJl (h 1 q- h2)gj2(h3 q- h4)-] 

x exp [27ti(hl +h2). (rjl-rj2)-ll2~ • 

This leads to 

Khlh2  

P P 
~ (gjl(hl)gil(h2)gjt(hl q-h2)~ (gj2(h3)gj2(h4)gj2(h3 q-h,,)) 

j1=1 j2=1 
Jl ¢J2 

p p 

~ (Igjl(hl q-h2)12~ (Igj2(hl q-h2)12~ 
j1=1 j2=1 

Jl :¢J2 

(III.1) 

P( ~ I,cJ52,cI931R1,R 2,R 3)~-- C 

xexp 2~s2RIR2R 3 c0s(4~1+4~2+4~3) . 

For 2hi =h2 it can be shown that the result is 

(II.1) 

P(~ 1, (I)2, (~3 [R 1, R2,  R 3) ~' C 

xexp 2~s2RIR2R  a cos (4~1+4~2+4~3) 

a3 R~R2 cos (24~ q~2)l q- ff3----~ 1 -  _] • (11.2) 

Integrating (II.1) and (II.2) with respect to (/)1, q~z and 
4'3, such that (/)1 +4)2+4)3 =q~, in both cases leads to 

P(dPIRI,R2, R3)~-C' exp(2  tr~23/2R1R2R 3 cos qb). (II.3) 

It follows that the condition 2hi:/:hj is relaxed in the 
process of integration with respect to the phases. 

From (II.2) we can calculate the probability dis- 
tribution of the phase of E21Eh2, 2hl + h / = 0 ,  by re- 
placing h 2 and (/)2 by - h  E and - ( ~ 2  respectively and 
next integrating with respect to 4)1, (~)2 and 4)3, such 
that 2(/)1 + t~2 ~ (~. This gives 

( t73 RER2 cos 4 )  (II.4) P(cblR 1, RE)--~ C" exp a2~7 ~ 

The same result is obtained from (13) by calculating 
( F )  and tr 2 for F-F21Fh2, 2h I + h  E =0. 

APPENDIX III 

Khlh2 in (33) 

The 'least-squares' value for the complex quantity 
Khlh2 in (33) is obtained by minimizing the expression 

If the magnitudes of the normalized (group) scattering 
factors 

p 
gj(h)/[ ~ (Igj(h)12)] 1/2 

j = l  

are small we may include the terms with Jl =J2. 
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